
v1.0:2008.04.20

On the applicability of the phenotype framework

implemented in ICES

Ricardo Aron T. F. Birmann

April, 2008

This article is part of the ICES project documentation and is available at http://ricardobirmann.com/ices/docs

1 Introduction

In ICES, just like in the real world,
LivingBeing-s1 have a bunch of genes that are
translated into a phenotype, which will then
determine the creature’s metabolism and be-
havior.

In order to maintain the biological coher-
ence of ICES’ simulation, it was critical to for-
mulate a framework that would allow complete
distinction between genotype and phenotype.
Genotype had to be inheritable, while pheno-
type couldn’t. Metabolism and behavior had
to dependent on phenotype, and never on geno-
type.

Additionally, as ”bonus” goals, the imple-
mentation should allow skills to be acquired
(or lost) throughout generations, simply due to
genetic differentiation between LivingBeing-s,
as well as to contemplate the possibility of new
abilities arising in the population as the lineage
evolves and to be free from hard-coded connota-
tion, allowing phenotypic structures to acquire
new functionality as generations come and go.

On top of it all, it should be a platform from
which all sorts of emergent complexity could be
dreamed about, from collective hunting to spe-
ciation.

This article does not necessarily justifies the
implemented code. Instead, it proposed a dis-
cussion over the described framework, envision-

ing improvement and amelioration of all con-
structed models, concepts and algorithms from
such discussion.

Since many references are made through-
out the text to classes on the ICES code, a
quick glance over the implemented structure is
needed beforehand.

2 Contextual overview

In ICES, each LivingBeing has a geno-
type represented by a collection of objects
of the class Gene and a phenotype repre-
sented by a collection of objects of the class
PhenotypicExpression.

LivingBeing-s also have a metabolism and
react to the surrounding environment; both
metabolism and behavior are symbolized by
objects of the Skill class, which represent in
a very broad manner, the complete collection
of skills, abilities, deficiencies, reactions and
metabolic processes that can be acquired by a
certain LivingBeing, as long as permitted by
its phenotype.

In order to tie Skill-s to the LivingBeing’s
phenotype, objects of an auxiliary class,
PhenotypicModel, are used. In ICES
notation, a Skill requires2 a group of
PhenotypicModel-s, and PhenotypicModel-s
are represented by PhenotypicExpression-s.

1Some of the notation in this article is used in accordance to the computer code to allow better referencing.
All text displayed in monospace font refers to ICES code.

2Underlined text is used herein to introduce specific notation or terminology used within ICES.
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Figure 1: Most important classes (in red) of the
phenotype framework implemented in ICES.

PhenotypicModel-s are abstract represen-
tations of what kind of body structure a
LivingBeing would need to be able to per-
form a specific Skill. For instance, a
group of PhenotypicModel-s could describe
the structure of a functional pair of legs that
would allow bipedism and LivingBeing-s with
PhenotypicExpression-s that could represent
these PhenotypicModel-s would be biped.

Furthermore, a Skill’s set of required
PhenotypicModel-s indicates the excel pheno-
typic structures needed to perform such ability
in the most efficient manner possible.

A concept of similarity between pheno-
typic models and expressions is contemplated
in the ICES algorithm, creating a sense of scale
in how well is a certain PhenotypicExpression
represents a PhenotypicModel. This way,
LivingBeing-s capable of one same Skill will
not necessarily perform it identically3, but we’ll
get back to this.

3 The phenotype model, as
implemented

3.1 A geometric optics into phe-
notype

In any model and, particularly, in any sim-
ulation, simplifications are made in order to:

a) Reduce the number of involved variables,
allowing easier understanding of the prob-
lem;

b) Isolate the aspects that are relevant for
the research intended, focusing the result-
ing data on information that has as little
interference as possible from uninterest-
ing details; and

c) Minimize the computational effort needed
to run the simulation.

With that in mind, the description of a
phenotype can be simplified to a finite set of
Ω relevant characteristics c1, c2, . . . , cΩ and
the simplified description of each of these ci,
as imposed by the fact the phenotype is be-
ing modeled, would take no more than a finite
amount of information.

Each of these sets of information (that de-
scribe each of the phenotypic characteristics)
should have a finite number Λi of degrees of
freedom yi,1, yi,2, . . . , yi,Λi

, as shown in the
decomposition on Table 1.

c1 c2 c3 · · · cΩ
y1,1 y2,1 y3,1 · · · yΩ,1

y1,2 y2,2 y3,2 · · · yΩ,2

...
...

...
...

y1,Λ1 y2,Λ2 y3,Λ3 · · · yΩ,ΛΩ

Table 1: Decomposition of phenotypic character-
istics ci into several degrees of freedom yj,k. Note
that Λ1, Λ2, . . . , ΛΩ are not necessarily the same.

Instances of the PhenotypicExpression
class represents the atomic aspects that con-
stitute the LivingBeing’s phenotype, and it
is consequently natural to understand each
PhenotypicExpression as one of the above
mentioned degrees of freedom of the system.

Since degrees of freedom are, by
definition, unidimensional, so should
PhenotypicExpression-s, and it is tempting,
to say the least, to represent these entities as
points in a unidimensional space.

Being so, in ICES notation, each degree of
freedom yj,k is understood as a point in the 1D
space referred to as the Phenotypic Space and
the value assumed by each coordinate is called
Phenotypic Space Value or, simply, PSV.

3All humans are bipeds, but some run faster than others.
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Figure 2: The unidimensional Phenotypic Space.

So remember: Skill-s require
PhenotypicModel-s, which are ideal pheno-
typic configurations for PhenotypicExpression-
s. These are abstract atomic entities used to
describe a LivingBeing’s phenotype according
to the simplifications made necessary by the
model; they have to be somehow dependent on
the creature’s genotype, composed of objects
of the class Gene.

3.2 Representativeness of pheno-
typic models by phenotypic
expressions

Because our LivingBeing-s have
PhenotypicExpression-s to be matched with
a set of PhenotypicModel-s required by each
Skill, gradual phenotypic changes along the
generations eventually lead to acquisition (or
loss) of a certain ability.

As a consequence, as the phenotype is al-
tered throughout the lineage, a concurrent
gradual increase (or decrease) in the efficiency
of the creature’s abilities is expected to be ob-
served in the generations right after (or before)
the acquisition (or loss) of the given skill.

ICES could not afford to have a
boolean skills framework, where either a
living being had or hadn’t a skill and
it was, therefore, needed that the imple-
mentation of PhenotypicExpression-s and
PhenotypicModel-s allowed for two of these to
be not only equal or different, but also simi-
lar to one another. This similarity is the basis
for the concept of representation, mentioned
before.

A PhenotypicExpression can be a repre-
sentation of a certain PhenotypicModel, but
that can be a good, a great, a bad or a lousy
representation. To quantify ”how good of a rep-
resentation it is” a function R(y) that takes the

PhenotypicExpression’s PSV (y) as argument
needed to be defined.

The determination of which function best
fits this purpose is far from easy and the topic is
completely open for discussion. However, ICES
needed something to be coded and a few crite-
ria were defined to choose a function; namely,
R(y) had to be symmetrical around ym, max-
imum at ym, balanced to only assume values
between 0 and 1 and should asymptotically go
to zero for PSV’s far from ym.

At the end of the day, a gaussian curve was
chosen:

R(y) = G(y) = exp
[
− (y − ym)2

2σ2

]
The parameter σ is user-defined and can be

different for each case. The curve is trimmed at
ym +3σ and ym−3σ to define a limited interval
of representativeness by the given model4 (red
and dotted on Figure 3).

The height of the gaussian curve at the PSV
of a PhenotypicExpression describes how well
it represents the PhenotypicModel at hand5.
This parameter can be used by Skill-s requir-
ing this model to calibrate the response accord-
ingly.

Figure 3: Gaussian curves centered at the
PhenotypicModel’s PSV (A) are used to de-
termine whether it is represented by given
PhenotypicExpression-s. A PSV inside
the interval of radius 3σ (B) indicates the
PhenotypicExpression is representative, while a
PSV outside such interval (C) imply that it isn’t.

The simulation shown in Figure 4, was pre-
pared to illustrate this concept of representa-
tiveness. In it, the only existing Skill was
”to move horizontally to the right”, but the
speed with which this movement took place
was determined by the representation of the
Skill’s PhenotypicModel by the creature’s

4G(ym ± 3σ) ∼ 0.01
50 ≤ G(y) ≥ 1 ; maxG(y) = G(ym) = 1
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PhenotypicExpression6. PSVs closer to the
center of the gaussian would imply in more ef-
ficient runners.

Twenty five LivingBeing-s were created
with random genotype and positioned as shown
in Figure 4(a). The different phenotypes were
analyzed by ICES to see which ones were ad-
equate for performing the existing Skill and
the simulation was put to run.

(a) (b) (c)

(d)

Figure 4: Simulation of twenty five LivingBeing-s
with random genotype in a world where there was
only one Skill available (move to the right); shown
at simulation cycles 0 (a), 15 (b), 50 (c) and 200
(d); Behavior differentiation caused by phenotype
variation can lead to an evolutionary advantage of
a certain lineage and is, therefore, a crucial feature
of ICES.

The Skill was coded to also change the
color of the LivingBeing from green to red
while it was moving so it was easy to see the
ones that did not have an appropriate pheno-
type to perform such Skill.

3.3 Multiple representations

Interestingly, this kind of struc-
ture automatically allows for a single
PhenotypicExpression to represent more
than one model, as shown on Figure 5 below.

Figure 5: A single PhenotypicExpression may
represent multiple PhenotypicModel-s

This kind of situation is fascinating given
the emergent evolutionary strategies that are
made possible. In the long run, this means
ICES can simulate situations where the func-
tion of a certain phenotypic characteristic
changes along generations, such as fish fins that
start to work as legs, or penguin wings that
were once used for flying and are now for swim-
ming.

Allowing the same PhenotypicExpression
to assume different roles gives the simulated
creature an evolutionary ”choice”, in the sense
that, depending on what the environmental sit-
uation is, one or other path may be taken by
the upcoming generations.

In the example shown in Figure 6, the
PhenotypicModel-s required by three different
Skill-s are identified by a code of colors. Lets
imagine a certain simulated creature needs ei-
ther the black Skill or the blue and red Skill-
s together to survive. Additionally, lets as-
sume LivingBeing-s with both red and blue
Skill-s have an evolutionary advantage over
those with only the black Skill.

Because of the overlapping between re-
quired PhenotypicModel-s for the blue and
black Skill-s, a mutation might allow the blue
Skill to appear in the lineage without the
black one being lost (note change in position
of PhenotypicExpression B in Figure 6(b)).
Later on, a second mutation can move the
PhenotypicExpression C and thus granting

6The Skill was configured to only require one PhenotypicModel and each LivingBeing had fifteen
PhenotypicExpression-s; it would suffice for the Skill to be acquired to have one of these PhenotypicExpression-s
representing the given PhenotypicModel.
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the creature the red Skill (Figure 6(c)).
Finally, now no longer needing the black

Skill, the lineage can evolve to specialize in
its novel abilities, as shown by the migration
of the PhenotypicExpression B towards the
optimal PSV (Figure 6(d)).

(a) initial situation

(b) blue skill acquired

(c) red skill acquired; black skill unneeded

(d) specialization

Figure 6: Sequence of phenotypical configurations
where the overlapping between PhenotypicModel-
s allows sophisticated evolutionary strategies to
emerge.

3.4 The implications of having a
single phenotypic space

It might be needless to say at
point, but all PhenotypicModel-s and
PhenotypicExpression-s are represented on
a single phenotypic space. In order to make
possible all versatility and flexibility that is
expected of ICES, it was understood that
there could be no segregation per Skill, per
LivingBeing or anything in this sense, mainly
because, conceptually:

1. Having a segregation would indicate the
use of a certain criterion to distinguish
two PhenotypicModel-s from one an-
other, while these are expected to be com-

pletely connotation-free, equivalent enti-
ties.

. . . and, pragmatically, with a single pheno-
typic space:

2. It is simpler to allow multiple Skill-s to
require the same PhenotypicModel.

3. Lineages are completely free to, through
evolution, have phenotypes that represent
any combination of PhenotypicModel-s.

4. Superposition of the representativeness
ranges of two or more PhenotypicModel-
s are made possible (and evident).

It is mandatory, however, to analyze the
effects of putting all PhenotypicExpression-s
and, more importantly, all PhenotypicModel-s
on the same space.

On a unidimensional space, any given set of
points is a totally ordered set. That means
that, for any given pair of elements, there exists
an implicit order between them (e.g. if a 6= b,
then either a > b or a < b). More than that,
given three points a, b and c, where a < b and
b < c, it is impossible to go from a to c without
passing by b.

In the phenotypic space, one
can imagine a sense of movement
of PhenotypicExpression-s, as geno-
type changes during reproduction and
PhenotypicExpression-s of newborn
LivingBeing-s are not exactly at the same
PSVs as in the case of the parent generation7.

A premature interpretation would lead to
the conclusion that PhenotypicExpression A
(as shown in Figure 7) would unavoidably rep-
resent one of the black PhenotypicModel-s
before being able to represent anything else
(such as the blue PhenotypicModel). How-
ever, genetic alterations are far from being con-
tinuous functions and do cause jumps in the
PhenotypicExpression’s PSV from one gen-
eration to the other.

7Although interesting and handy in some cases, the understanding of this phenomenon as movement is mis-
leading, since PhenotypicExpression-s of the parent generation do not correlate with the PhenotypicExpression-s
of its offspring. Even if child LivingBeing-s are identical to their parents (clones), the identical phenotype would
be a reflex of the inherited identical genotype and never of some sort of phenotypical inheritance.
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(a)

(b)

Figure 7: One of the limitations of a unidi-
mensional phenotypic space is the implied ordered
between PhenotypicModel-s, however, instead of
changing continuously throughout the generations
(a), PhenotypicExpression-s jump from one PSV
to another (b).

More than that, unless the simulation at
hand contemplates very simple Skill-s with
only one required PhenotypicModel per Skill,
the risk of a PhenotypicExpression being
”trapped” between two PhenotypicModel-s
wouldn’t imply a risk of a certain phenotypic
characteristic being ”trapped” between other
two, since the creature’s phenotype (as a whole)
would actually exist in a n-dimensional world8

and sets of points in spaces with cardinality
greater than one are not ordered.

Still, there are a few problems with using
a single phenotypic space, mostly related to a
probabilistic analysis of acquisition of Skill-s.

Just to mention one example: given
a PhenotypicModel M represented by a
PhenotypicExpression E at PSV y, if genetic
alterations incurred during reproduction have
an equal probability of shifting y by +∆y or
by −∆y and if all PhenotypicModel-s have the
same σ; it is impossible to have more than two
PhenotypicModel-s with the same probability
of being acquired by a shift in E’s position.

This is clearly a very specific situation, de-
pendent on many variables, such as the distri-
bution of the probability of phenotypic shifts
to occur, as a function of ∆y, that could be
asymmetrical or periodical or discontinuous; or
the variance of σ values along the universe of
existing PhenotypicModel-s; and so on.

These issues have been looked at as mi-
nor difficulties incurred by the simplifications9

made during the creation of the model and
considered to be acceptable, given the features
made possible by the use of this implementa-
tion.

4 Proposed discussion

The disadvantage of modeling reality into a
crazy and complex (even if flexible and pow-
erful) framework is that sometimes it can get
really hard to trace a straight line between the
represented subject in the real world and its
representation inside the model.

Specifically in the case of ICES, there have
been a few times when the implementation of a
certain feature had direct impact in the model
used, such as when a concept of similarity
was needed between PhenotypicModel-s and
PhenotypicExpression-s and a complex mech-
anism (gaussian representation curves) was
coded.

It is extremely important to always reex-
amine the implications of these structures and
algorithms, even if this leads to code deletion
and re-implementation.

This article was written with the intention
of stimulating a discussion over the concepts
and models adopted in the phenotype frame-
work in ICES. The implemented strategy is ab-
solutely not definitive and will hopefully be re-
vised after new ideas emerge from dialogue.

8Where n = number of PhenotypicModel-s represented by the LivingBeing’s PhenotypicExpression-s.
9Simplifications are necessary on any process of modeling, as discussed earlier.
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